Title: MHD modeling of the double-gradient (kink) magnetic instability
Authors: Korovinskiy, D. B ×
Divin, A
Erkaev, N. V
Ivanova, V. V
Ivanov, I. B
Semenov, V. S
Lapenta, Giovanni
Markidis, S
Biernat, H. K
Zellinger, M #
Issue Date: 2013
Publisher: American Geophysical Union
Series Title: Journal of Geophysical Research vol:118 issue:3 pages:1146-1158
Abstract: The paper presents the detailed numerical investigation of the “double-gradient mode,” which is believed to be responsible for the magnetotail flapping oscillations—the fast vertical (normal to the layer) oscillations of the Earth's magnetotail plasma sheet with a quasiperiod ∼100–200 s. The instability is studied using the magnetotail near-equilibrium configuration. For the first time, linear three-dimensional numerical analysis is complemented with full 3-D MHD simulations. It is known that the “double-gradient mode” has unstable solutions in the region of the tailward growth of the magnetic field component, normal to the current sheet. The unstable kink branch of the mode is the focus of our study. Linear MHD code results agree with the theory, and the growth rate is found to be close to the peak value, provided by the analytical estimates. Full 3-D simulations are initialized with the numerically relaxed magnetotail equilibrium, similar to the linear code initial condition. The calculations show that current layer with tailward gradient of the normal component of the magnetic field is unstable to wavelengths longer than the curvature radius of the field line. The segment of the current sheet with the earthward gradient of the normal component makes some stabilizing effect (the same effect is registered in the linearized MHD simulations) due to the minimum of the total pressure localized in the center of the sheet. The overall growth rate is close to the theoretical double-gradient estimate averaged over the computational domain.
ISSN: 0148-0227
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Plasma-astrophysics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science