ITEM METADATA RECORD
Title: Suppressiveness of 18 composts against 7 pathosystems: Variability in pathgen response
Authors: Termorshuizen, A.J. ×
Van Rijn, E.
Van der Gaag, D.J.
Alabouvette, C.
Chen, Y.
Lagerlöf, J.
Malandrakis, A.A.
Paplomatas, E.J.
Rämert, B.
Ryckeboer, Jaak
Steinberg, C.
Zmora-Nahum, S. #
Issue Date: 2006
Publisher: Pergamon Press
Series Title: Soil Biology & Biochemistry vol:38 issue:8 pages:2461-2477
Abstract: Compost is often reported as a substrate that is able to suppress soilborne plant pathogens, but suppression varies according to the type of compost and pathosystem. Reports often deal with a single pathogen while in reality crops are attacked by multiple plant pathogens. The goal of the present study was to evaluate the disease suppression ability of a wide range of composts for a range of plant
pathogens. This study was conducted by a consortium of researchers from several European countries. Composts originated from different countries and source materials including green and yard waste, straw, bark, biowaste and municipal sewage. Suppressiveness of compost-amended (20% vol./vol.) peat-based potting soil was determined against Verticillium dahliae on eggplant, Rhizoctonia solani on
cauliflower, Phytophthora nicotianae on tomato, Phytophthora cinnamomi on lupin and Cylindrocladium spathiphylli on Spathiphyllum sp., and of compost-amended loamy soil (20% vol./vol.) against R. solani on Pinus sylvestris and Fusarium oxysporum f. sp. lini on flax.
From the 120 bioassays involving 18 composts and 7 pathosystems, significant disease suppression was found in 54% of the cases while only 3% of the cases showed significant disease enhancement. Pathogens were affected differently by the composts. In general, prediction
of disease suppression was better when parameters derived from the compost mixes were used rather than those derived from the pure composts. Regression analyses of disease suppression of the individual pathogens with parameters of compost-amended peat-based mixes revealed the following groupings: (1) competition-sensitive: F. oxysporum and R. solani/cauliflower; (2) rhizosphere-affected: V. dahliae; (3) pH-related: P. nicotianae; and (4) specific/unknown: R. solani/pine, P. cinnamomi and C. spathiphylli. It was concluded that application of compost has in general a positive or no effect on disease suppression, and only rarely a disease stimulating effect.
ISSN: 0038-0717
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division Soil and Water Management
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
suppressiveness of 18 composts against 7 pathosystems.pdf Published 277KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science