ITEM METADATA RECORD
Title: The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides
Authors: Li, W. ×
Rokni-Zadeh, H.
De Vleeschouwer, M.
Ghequire, Maarten
Sinnaeve, D.
Xie, G.-L.
Rozenski, Jef
Madder, A.
Martins, J.
De Mot, René #
Issue Date: 2013
Publisher: Public Library of Sciene
Series Title: PLoS One vol:8 issue:5 pages:e62946
Article number: doi:10.1371/journal.pone.0062946
Abstract: The rhizosphere isolate Pseudomonas putida BW11M1 produces a mixture of cyclic lipopeptide congeners, designated xantholysins. Properties of the major compound xantholysin A, shared with several other Pseudomonas lipopeptides, include antifungal activity and toxicity to Gram-positive bacteria, a supportive role in biofilm formation, and facilitation of surface colonization through swarming. Atypical is the lipopeptide’s capacity to inhibit some Gram-negative bacteria, including several xanthomonads. The lipotetradecadepsipeptides are assembled by XtlA, XtlB and XtlC, three co-linearly operating non-ribosomal peptide synthetases (NRPSs) displaying similarity in modular architecture with the entolysin-producing enzymes of the entomopathogenic Pseudomonas entomophila L48. A shifted serine-incorporating unit in the eight-module enzyme XtlB elongationg the central peptide moiety not only generates an amino acid sequence differing at several equivalent positions from entolysin, but also directs xantholysin’s macrocyclization into an octacyclic structure, distinct from the pentacyclic closure in entolysin. Relaxed fatty acid specificity during lipoinitiation by XtlA (acylation with 3-hydroxydodec-5-enoate instead of 3-hydroxydecanoate) and for incorporation of the ultimate amino acid by XtlC (valine instead of isoleucine) account for the production of the minor structural variants xantholysin C and B, respectively. Remarkably, the genetic backbones of the xantholysin and entolysin NRPS systems also bear pronounced phylogenetic similarity to those of the P. putida strains PCL1445 and RW10S2, albeit generating the seemingly structurally unrelated cyclic lipopeptides putisolvin (undecapeptide containing a cyclotetrapeptide) and WLIP (nonapeptide containing a cycloheptapeptide), respectively. This similarity includes the linked genes encoding the cognate LuxR-family regulator and tripartite export system components in addition to individual modules of the NRPS enzymes, and probably reflects a common evolutionary origin. Phylogenetic scrutiny of the modules used for selective amino acid activation by these synthetases indicates that bacteria such as pseudomonads recruit and reshuffle individual biosynthetic units and blocks thereof to engineer reorganized or novel NRPS assembly lines for diversified synthesis of lipopeptides.
ISSN: 1932-6203
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre of Microbial and Plant Genetics
Medicinal Chemistry (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
RDM-PLoS One 2013.pdfOA article Published 7073KbAdobe PDFView/Open

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science