Title: Censored regression - local linear-approximations and their applications
Authors: Fan, Jq ×
Gijbels, Irène #
Issue Date: 1994
Publisher: Amer statistical assoc
Series Title: Journal of the American Statistical Association vol:89 issue:426 pages:560-570
Abstract: Various statistical tools are available for modeling the relationship between response and covariate if the data are fully observable. In the situation of censored data, however, those tools are no longer directly applicable. This article provides an easily implemented methodology for modeling the association, based on censored data. The form of the regression relationship will be completely determined by the data; no assumptions are made about this form. Basic ideas behind the methodology are to transform the observed data in an appropriate simple way and then to apply a locally weighted least squares regression. The proposed estimator involves a variable bandwidth that automatically adapts to the design of the data points. That the methodology is very easy to implement is illustrated by several examples, including simulation studies and an analysis of the Stanford Heart Transplant Data and the Primary Biliary Cirrhosis Data. Several theoretical considerations are reflected in the examples. Finally, some basic asymptotic results are established.
ISSN: 0162-1459
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science