ITEM METADATA RECORD
Title: Lagrangian isometric immersions of a real space form M^n(c) into a complex space form M^n(4c)
Authors: Chen, BY ×
Dillen, Franki
Verstraelen, Leopold
Vrancken, Luc #
Issue Date: 1998
Publisher: Cambridge univ press
Series Title: Mathematical proceedings of the cambridge philosophical society vol:124 pages:107-125
Abstract: It is well known that totally geodesic Lagrangian submanifolds of a complex-space-form (M) over tilde(n)(4c) of constant holomorphic sectional curvature 4c are real-space-forms of constant sectional curvature c. In this paper we investigate and determine non-totally geodesic Lagrangian isometric immersions of real-space-forms of constant sectional curvature c into a complex-space-form (M) over tilde(n)(4c). In order to do so, associated with each twisted product decomposition of a real-space-form of the form I-f1(1) X ... X-fk I-k X (1) Nn-k(c), we introduce a canonical 1-form, called the twister form of the twisted product decomposition. Roughly speaking, our main result says that if the twister form of such a twisted product decomposition of a simply-connected real-space-form of constant sectional curvature c is twisted closed, then it admits a 'unique' adapted Lagrangian isometric immersion into a complex-space-form (M) over tilde(n)(4c). Conversely, if L: M-n(c) --> (M) over tilde(n)(c) is a non-totally geodesic Lagrangian isometric immersion of a real-space-form M-n(c) of constant sectional curvature c into a complex-space-form (M) over tilde(n)(4c), then M-n(c) admits an appropriate twisted product decomposition with twisted closed twistor form and, moreover, the Lagrangian immersion L is given by the corresponding adapted Lagrangian isometric immersion of the twisted product. In this paper we also provide explicit constructions of adapted Lagrangian isometric immersions of some natural twisted product decompositions of real-space-forms.
URI: 
ISSN: 0305-0041
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Geometry Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science