Title: The cortical representation of objects rotating in depth
Authors: Weigelt, Sarah ×
Kourtzi, Zoe
Kohler, Axel
Singer, Wolf
Muckli, Lars #
Issue Date: Apr-2007
Publisher: The Society for Neuroscience
Series Title: Journal of Neuroscience vol:27 issue:14 pages:3864-74
Abstract: The perception of motion provides valuable interpolations of the visual scene. This fundamental capacity of the visual system is evident in apparent rotation: by presenting only two images of an object rotated in space, a vivid illusion of a smooth apparent motion in three dimensions can be induced. The unseen interpolated rotation views are filled in by the visual system. In the present study, we identified the cortical network responsible for this filling-in process. We argue that cross talk between areas of the ventral and dorsal visual pathways promote the illusion of smooth apparent rotation. Most interestingly, the network represents the unseen object views. Using functional magnetic resonance adaptation, we are able to show that the cortical network selectively adapts to the illusory object views. Our findings provide strong evidence for cortical representations of three-dimensional rotating objects that are view invariant with respect to the rotation path. Furthermore, our results confirm psychophysical investigations that unseen interpolated rotation views can be primed by apparent motion. By applying functional magnetic resonance adaptation, we show for the first time cortical adaptation to unseen objects. Together, our neuroimaging study advances the understanding of the cortical mechanisms mediating the influence of motion on object processing.
ISSN: 0270-6474
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science