Title: Upward extension of the Jacobi matrix for orthogonal polynomials
Authors: Ronveaux, A ×
Van Assche, Walter #
Issue Date: 1996
Publisher: Academic press inc jnl-comp subscriptions
Series Title: Journal of approximation theory vol:86 issue:3 pages:335-357
Abstract: Orthogonal polynomials on the real line always satisfy a three-term recurrence relation. The recurrence coefficients determine a tridiagonal semi-infinite matrix (Jacobi matrix) which uniquely characterizes the orthogonal polynomials. We investigate new orthogonal polynomials by adding to the Jacobi matrix r new rows and columns, so that the original Jacobi matrix is shifted downward. The r new rows and columns contain 2r new parameters and the newly obtained orthogonal polynomials thus correspond to an upward extension of the Jacobi matrix. We give an explicit expression of the new orthogonal polynomials in terms of the original orthogonal polynomials, their associated polynomials, and the 2r new parameters, and we give a fourth order differential equation for these new polynomials when the original orthogonal polynomials are classical. Furthermore we show how the orthogonalizing measure for these new orthogonal polynomials can be obtained and work out the details for a one-parameter family of Jacobi polynomials for which the associated polynomials are again Jacobi polynomials. (C) 1996 Academic Press, Inc.
ISSN: 0021-9045
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Analysis Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science