Title: Bootstrap bandwidth selection in kernel density estimation from a contaminated sample
Authors: Delaigle, A
Gijbels, Irène # ×
Issue Date: 2004
Publisher: Kluwer academic publ
Series Title: Annals of the institute of statistical mathematics vol:56 issue:1 pages:19-47
Abstract: In this paper we consider kernel estimation of a density when the data are contaminated by random noise. More specifically we deal with the problem of how to choose the bandwidth parameter in practice. A theoretical optimal bandwidth is defined as the minimizer of the mean integrated squared error. We propose a bootstrap procedure to estimate this optimal bandwidth, and show its consistency. These results remain valid for the case of no measurement error, and hence also summarize part of the theory of bootstrap bandwidth selection in ordinary kernel density estimation. The finite sample performance of the proposed bootstrap selection procedure is demonstrated with a simulation study. An application to a real data example illustrates the use of the method.
ISSN: 0020-3157
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science