Title: Local adaptivity of kernel estimates with plug-in local bandwidth selectors
Authors: Gijbels, Irène ×
Mammen, E #
Issue Date: 1998
Publisher: Blackwell publ ltd
Series Title: Scandinavian journal of statistics vol:25 issue:3 pages:503-520
Abstract: In non-parametric function estimation selection of a smoothing parameter is one of the most important issues. The performance of smoothing techniques depends highly on the choice of this parameter. Preferably the bandwidth should be determined via a data-driven procedure. In this paper we consider kernel estimators in a white noise model, and investigate whether locally adaptive plug-in bandwidths can achieve optimal global rates of convergence. We consider various classes of functions: Sobolev classes, bounded variation function classes, classes of convex functions and classes of monotone functions. We study the situations of pilot estimation with oversmoothing and without oversmoothing. Our main finding is that simple local plug-in bandwidth selectors can adapt to spatial inhomogeneity of the regression function as long as there are no local oscillations of high frequency. We establish the pointwise asymptotic distribution of the regression estimator with local plug-in bandwidth.
ISSN: 0303-6898
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science