Title: 18F-FDG Labeling of Mesenchymal Stem Cells and Multipotent Adult Progenitor Cells for PET Imaging: Effects on Ultrastructure and Differentiation Capacity
Authors: Wolfs, Esther ×
Struys, Tom
Notelaers, Tineke
Roberts, Scott
Sohni, Abishek
Bormans, Guy
Van Laere, Koen
Luyten, Frank
Gheysens, Olivier
Lambrichts, Ivo
Verfaillie, Catherine
Deroose, Christophe #
Issue Date: Mar-2013
Publisher: Society of Nuclear Medicine
Series Title: Journal of Nuclear Medicine vol:54 issue:3 pages:447-454
Abstract: Because of their extended differentiation capacity, stem cells have gained great interest in the field of regenerative medicine. For the development of therapeutic strategies, more knowledge on the in vivo fate of these cells has to be acquired. Therefore, stem cells can be labeled with radioactive tracer molecules such as (18)F-FDG, a positron-emitting glucose analog that is taken up and metabolically trapped by the cells. The aim of this study was to optimize the radioactive labeling of mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) in vitro with (18)F-FDG and to investigate the potential radiotoxic effects of this labeling procedure with a range of techniques, including transmission electron microscopy (TEM). METHODS: Mouse MSCs and rat MAPCs were used for (18)F-FDG uptake kinetics and tracer retention studies. Cell metabolic activity, proliferation, differentiation and ultrastructural changes after labeling were evaluated using an Alamar Blue reagent, doubling time calculations and quantitative TEM, respectively. Additionally, mice were injected with MSCs and MAPCs prelabeled with (18)F-FDG, and stem cell biodistribution was investigated using small-animal PET. RESULTS: The optimal incubation period for (18)F-FDG uptake was 60 min. Significant early tracer washout was observed, with approximately 30%-40% of the tracer being retained inside the cells 3 h after labeling. Cell viability, proliferation, and differentiation capacity were not severely affected by (18)F-FDG labeling. No major changes at the ultrastructural level, considering mitochondrial length, lysosome size, the number of lysosomes, the number of vacuoles, and the average rough endoplasmic reticulum width, were observed with TEM. Small-animal PET experiments with radiolabeled MAPCs and MSCs injected intravenously in mice showed a predominant accumulation in the lungs and a substantial elution of (18)F-FDG from the cells. CONCLUSION: MSCs and MAPCs can be successfully labeled with (18)F-FDG for molecular imaging purposes. The main cellular properties are not rigorously affected. TEM confirmed that the cells' ultrastructural properties are not influenced by (18)F-FDG labeling. Small-animal PET studies confirmed the intracellular location of the tracer and the possibility of imaging injected prelabeled stem cell types in vivo. Therefore, direct labeling of MSCs and MAPCs with (18)F-FDG is a suitable technique to noninvasively assess cell delivery and early retention with PET.
ISSN: 0161-5505
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Cell and Gene Therapy Applications (-)
Embryo and Stemcells (-)
Biomedical MRI
Nuclear Medicine & Molecular Imaging
× corresponding author
# (joint) last author

Files in This Item:
File Status SizeFormat
18F-FDG.pdf Published 1040KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science