ITEM METADATA RECORD
Title: Acoustic phenomena in electrostatic dusty plasma shear flows
Authors: Poedts, Stefaan ×
Khujadze, GR
Rogava, AD #
Issue Date: 2000
Publisher: Amer inst physics
Series Title: Physics of plasmas vol:7 issue:8 pages:3204-3213
Abstract: Recent studies of nonmodal phenomena in two-component plasma flows revealed that the velocity shear induces a number of new effects both in electrostatic and magnetized shear flows. It can be expected that dusty plasmas also host shear-modified and shear-induced modes of collective behavior, which may be found by means of the nonmodal approach and which are inaccessible by means of the standard normal mode analysis. In this paper, considering the simple electrostatic dusty plasma case, a general mathematical formalism is developed for studying how velocity shear affects the evolution of dust-acoustic waves (DAWs) and ion-acoustic waves (IAWs). In the limiting (very low-frequency) case when Boltzmann distributions are used both for the electrons and the ions it is found that the velocity shear enables the extraction of kinetic energy of the background flow by the dust-acoustic waves. It is also shown that the velocity shear leads to the appearance of a new collective mode of the dust particles-shear dust vortices. In the general case it is demonstrated that the velocity shear couples DAWs and IAWs and under suitable conditions may cause their mutual transformation into each other. The flow also sustains shear ion-dust vortices-nonperiodic patterns, which may eventually acquire oscillating features and generate both DAWs and IAWs. The inverse regime, which is called evanescence of acoustic waves, can also occur: the initial blend of DAWs and IAWs can fade away degenerating into the nonperiodic, evanescent perturbation. (C) 2000 American Institute of Physics. [S1070-664X(00)04108-2].
URI: 
ISSN: 1070-664X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Plasma-astrophysics Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
pp094.pdf Published 225KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science