Title: Optimal investment in a levy market
Authors: Corcuera, JM ×
Guerra, J
Nualart, D
Schoutens, Wim #
Issue Date: 2006
Publisher: Springer
Series Title: Applied mathematics and optimization vol:53 issue:3 pages:279-309
Abstract: In this paper we consider the optimal investment problem in a market where the stock price process is modeled by a geometric Levy process (taking into account jumps). Except for the geometric Brownian model and the geometric Poissonian model, the resulting models are incomplete and there are many equivalent martingale measures. However, the model can be completed by the so-called power-jump assets. By doing this we allow investment in these new assets and we can try to maximize the expected utility of these portfolios. As particular cases we obtain the optimal portfolios based in stocks and bonds, showing that the new assets are superfluous for certain martingale measures that depend on the utility function we use.
ISSN: 0095-4616
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Statistics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science