Title: A flexible framework for probabilistic models of social trust
Authors: Huang, Bert ×
Kimmig, Angelika
Getoor, Lise
Golbeck, Jennifer #
Issue Date: 2013
Publisher: Springer
Series Title: Lecture Notes in Computer Science vol:7812 pages:265-273
Conference: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP) edition:6 location:Washington DC, USA date:02-05 April 2013
Abstract: In social networks, notions such as trust, fondness, or respect between users can be expressed by associating a strength with each tie. This provides a view of social interaction as a weighted graph. Sociological models for such weighted networks can differ significantly in their basic motivations and intuitions. In this paper, we present a flexible framework for probabilistic modeling of social networks that allows one to represent these different models and more. The framework, probabilistic soft logic (PSL), is particularly well-suited for this domain, as it combines a declarative, first-order logic-based syntax for describing relational models with a soft-logic representation, which maps naturally to the non-discrete strength of social trust. We demonstrate the flexibility and effectiveness of PSL for trust prediction using two different approaches: a structural balance model based on social triangles, and a social status model based on a consistent status hierarchy. We test these models on real social network data and find that PSL is an effective tool for trust prediction.
ISSN: 0302-9743
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Informatics Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
huang-sbp13.pdfmain article Published 236KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.