ITEM METADATA RECORD
Title: Metal artifact reduction in computed tomography using local models in an image block-iterative scheme
Authors: Van Slambrouck, Katrien ×
Nuyts, Johan #
Issue Date: Nov-2012
Publisher: Published for the American Association of Physicists in Medicine by the American Institute of Physics
Series Title: Medical Physics vol:39 issue:11 pages:7080-7093
Article number: 10.1118/1.4762567
Abstract: Purpose: In iterative reconstruction, metal artifacts can be reduced by applying more accurate reconstruction models that are usually also more computationally demanding. The hypothesis of this work is that these complex models only need to be applied in the vicinity of the metals and that a less complex model can be used for the remainder of the reconstruction volume.Methods: A method is described that automatically divides the reconstruction volume into metal and nonmetal regions. The different regions are called patches. A different energy and resolution model can be assigned to each of the patches. The patches containing metals are reconstructed with a fully polychromatic spectral model (IMPACT) and if necessary with an increased resolution model. The patch without metals is reconstructed with a simple polychromatic model (MLTRC) that only includes the spectral behavior of water attenuation. Comparing the computational complexity of IMPACT and MLTRC gives a ratio of 8:3. The different patches are updated sequentially as in a grouped coordinate algorithm. Two phantoms were simulated and measured: a circular phantom containing small metal cylinders and a body phantom representing a human pelvis with two femoral implants. As a first test, the sequential update of the patches was applied while using the same energy model for all patches. Second, the local model approach was applied using MLTRC for nonmetal regions and IMPACT for metal regions. The results of different iterative reconstruction schemes are compared to the results of projection completion, another important method for the reduction of metal artifacts.Results: Reconstruction schemes including the sequential update of the patches result in images with less streak artifacts compared to a regular reconstruction. The sequential update of each of the metal regions improves the relative convergence of the metals (edges and attenuation values) against the rest of the image, which leads to an improved artifact reduction. Using the combined IMPACT+MLTRC model results in a similar image quality as using IMPACT everywhere, while providing an important benefit regarding computational complexity. Some streak and shadow artifacts were still present, but all structures present in the phantom could be observed. Projection completion results in reconstructions with less obvious streak and shadow artifacts but tends to deform or erase structures lying close to or in between metallic structures.Conclusions: Metal artifact reduction with iterative reconstruction can be achieved by using complex models only locally without losing image quality. Separately updating metal regions leads to reduced streak artifacts. Structures lying close to or in between metals are often better reconstructed, compared to projection completion results, because all available information is used.
ISSN: 0094-2405
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Nuclear Medicine & Molecular Imaging
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
KVSlambrouck_LocalModels_MedPhys.pdf Published 23553KbAdobe PDFView/Open

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science