Title: Comparison of models for computing drainage discharge
Authors: El-Sadek, Alaa ×
Feyen, Jan
Berlamont, Jean #
Issue Date: Jan-2001
Publisher: Asce-amer soc civil engineers
Series Title: Journal of irrigation and drainage engineering-asce vol:127 issue:6 pages:363-369
Abstract: The WAVE model describes the transport and transformations of matter and energy in the soil, crop, and vadose environment. A lateral field drainage subprogram was added to the WAVE model to simulate lateral subsurface drainage flow. The subsurface drainage is considered as the drainage provided by evenly spaced parallel drains with a free outlet: drain tubing or ditch. The rate of subsurface water movement into drain tubes or ditches depends on the hydraulic conductivity of the soil, drain or ditch spacing, hydraulic head in the drains, profile depth, and water table elevation. Hooghoudt's steady-state equation was selected for incorporation in the WAVE model. The subsurface drainage subprogram was calibrated and validated by comparison with the SWAP model (The Netherlands) and DRAINMOD (the United States) and partially by using 7 years of drain outflow data from an experimental field under fallow and cropped conditions. The comparative study revealed that the three models performed equally well and that the models were reliable and accurate tools for predicting the drainage flux as a function of rainfall-evapotranspiration and local conditions. The WAVE model, in comparison to the SWAP and DRAINMOD model, provided as good a prediction of the lateral subsurface drainage flow to drains. The statistical analysis between each model and observed data revealed that the three models were able to predict with sufficient accuracy the observed drainage discharge. The DRAINMOD model, however, has the advantage of giving a more accurate estimate of the discharge, resulting in a more precise modeling. The models were consistent in predicting water table levels, but they could not be verified against field data because of a lack of suitable measurements.
ISSN: 0733-9437
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Faculty of Bioscience Engineering
Division Soil and Water Management
Hydraulics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science