Title: Quantification of the heat exchange of chicken eggs
Authors: Van Brecht, Andres ×
Hens, Hugo
Lemaire, Jean-Lou
Aerts, Jean-Marie
Degraeve, P
Berckmans, Daniel #
Issue Date: Feb-2005
Publisher: Poultry science assoc inc
Series Title: Poultry science vol:84 issue:3 pages:353-361
Abstract: In the incubation process of domestic avian eggs, the development of the embryo is mainly influenced by the physical microenvironment around the egg. Only small spatiotemporal deviations in the optimal incubator air temperature are allowed to optimize hatchability and hatchling quality. The temperature of the embryo depends on 3 factors: (1) the air temperature, (2) the exchange of heat between the egg and its microenvironment and (3) the time-variable heat production of the embryo. Theoretical estimates on the heat exchange between an egg and its physical microenvironment are approximated using equations that assume an approximate spherical shape for eggs. The objective of this research was to determine the heat transfer between the eggshell and its microenvironment and then compare this value to various theoretical estimates. By using experimental data, the overall and the convective heat transfer coefficients were determined as a function of heat production, air humidity, air speed, and air temperature. Heat transfer was not affected by air humidity but solely by air temperature, embryonic heat generation, and air speed and flow around eggs. Also, heat transfer in forced-air incubators occurs mainly by convective heat loss, which is dependent on the speed of airflow. A vertical airflow is more efficient than a horizontal airflow in transferring heat from the egg. We showed that describing an egg as a sphere underestimated convective heat transfer by 33% and was, therefore, too simplistic to accurately assess actual heat transfer from real eggs.
ISSN: 0032-5791
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division M3-BIORES: Measure, Model & Manage Bioresponses (-)
Building Physics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science