Title: Is adapted measured resection superior to gap-balancing in determining femoral component rotation in total knee replacement?
Authors: Luyckx, T ×
Peeters, T
Vandenneucker, Hilde
Victor, Jan
Bellemans, Johan #
Issue Date: Sep-2012
Publisher: Published for the British Editorial Society of Bone & Joint Surgery by Churchill Livingstone
Series Title: Journal of Bone and Joint Surgery. British Volume vol:94 issue:9 pages:1271-6
Abstract: Obtaining a balanced flexion gap with correct femoral component rotation is one of the prerequisites for a successful outcome after total knee replacement (TKR). Different techniques for achieving this have been described. In this study we prospectively compared gap-balancing versus measured resection in terms of reliability and accuracy for femoral component rotation in 96 primary TKRs performed in 96 patients using the Journey system. In 48 patients (18 men and 30 women) with a mean age of 65 years (45 to 85) a tensor device was used to determine rotation. In the second group of 48 patients (14 men and 34 women) with a mean age of 64 years (41 to 86), an 'adapted' measured resection technique was used, taking into account the native rotational geometry of the femur as measured on a pre-operative CT scan. Both groups systematically reproduced a similar external rotation of the femoral component relative to the surgical transepicondylar axis: 2.4° (sd 2.5) in the gap-balancing group and 1.7° (sd 2.1) in the measured resection group (p = 0.134). Both gap-balancing and adapted measured resection techniques proved equally reliable and accurate in determining femoral component rotation after TKR. There was a tendency towards more external rotation in the gap-balancing group, but this difference was not statistically significant (p = 0.134). The number of outliers for our 'adapted' measured resection technique was much lower than reported in the literature.
ISSN: 0301-620X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Biomechanics, -implants and Tissue Engineering (-)
Medicine Teaching Programs
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science