Title: Intracytoplasmic trapping of influenza virus by a lipophilic derivative of aglycoristocetin
Authors: Vanderlinden, Evelien ×
Vanstreels, Els
Boons, Eline
Ter Veer, Wouter
Huckriede, Anke
Daelemans, Dirk
Van Lommel, Alfons
Roth, Erzsébet
Sztaricskai, Ferenc
Herczegh, Pàl
Naesens, Lieve #
Issue Date: Sep-2012
Publisher: American Society for Microbiology (ASM)
Series Title: Journal of Virology vol:86 issue:17 pages:9416-9431
Abstract: We report on a new anti-influenza virus agent, SA-19, a lipophilic glycopeptide derivative consisting of aglycoristocetin coupled to a phenylbenzyl-substituted cyclobutenedione. In Madin-Darby canine kidney cells infected with influenza A/H1N1, A/H3N2, or B virus, SA-19 displayed a 50% antivirally effective concentration of 0.60 μM and a selectivity index (ratio of cytotoxic versus antiviral concentration) of 112. SA-19 was 11-fold more potent than unsubstituted aglycoristocetin and was active in human and nonhuman cell lines. Virus yield at 72 h p.i. was reduced by 3.6 logs at 0.8 μM SA-19. In contrast to amantadine and oseltamivir, SA-19 did not select for resistance upon prolonged virus exposure. SA-19 was shown to inhibit an early postbinding step in virus replication. The compound had no effect on hemagglutinin (HA)-mediated membrane fusion in an HA-polykaryon assay and did not inhibit the low-pH-induced refolding of the HA in a tryptic digestion assay. However, a marked inhibitory effect on the transduction exerted by retroviral pseudoparticles carrying an HA or vesicular stomatitis virus glycoprotein (VSV-G) fusion protein was noted, suggesting that SA-19 targets a cellular factor with a role in influenza virus and VSV entry. Using confocal microscopy with antinucleoprotein staining, SA-19 was proven to completely prevent the influenza virus nuclear entry. This virus arrest was characterized by the formation of cytoplasmic aggregates. SA-19 appeared to disturb the endocytic uptake and trap the influenza virus in vesicles distinct from early, late, or recycling endosomes. The aglycoristocetin derivative SA-19 represents a new class of potent and broad-acting influenza virus inhibitors with potential clinical relevance.
ISSN: 0022-538X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
Translational Cell & Tissue Research
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
2012120.pdf Published 4207KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science