Title: Controllable synthesis of ordered ZnO nanodots Arrays by nanosphere lithography
Authors: Chen, L
Huang, J ×
Ye, Z
Zeng, Y
Wang, S
Wu, H #
Issue Date: Aug-2008
Publisher: American Chemical Society
Series Title: Crystal Growth & Design vol:8 issue:8 pages:2917-2920
Abstract: Controllable ordered hexagonally patterned ZnO nanodots; were achieved by polystyrene nanosphere lithography at room temperature. First a self-assembled monolayer of polystyrene spheres was formed as a mask. Then ZnO was deposited through the mask by e-beam vaporization. After the polystyrene spheres were etched away, ordered ZnO nanodots arrays were formed on the substrate. The obtained ZnO nanodots are of acceptable quality with high chemical purity and preferential c-axis orientation. A photoluminescence measurement shows a blue shift in free-exciton emission derived from low-dimensional quantum characteristics. The size of the nanodots can be controlled by varying the deposition time. The ZnO nanodots with growth times of 1, 2, and 3 min exhibit different free-exciton emission at 3.378, 3.356, and 3.314 eV. Therefore this is a technique with precise control of the size and geometry of the dots, which has a great promise for applications in nanoscale optoelectronic devices.
ISSN: 1528-7483
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science