ITEM METADATA RECORD
Title: Type I signal peptidases of Gram-positive bacteria
Authors: van Roosmalen, Maarten L ×
Geukens, Nick
Jongbloed, Jan D H
Tjalsma, Harold
Dubois, Jean-Yves F
Bron, Sierd
van Dijl, Jan Maarten
Anné, Jozef #
Issue Date: Nov-2004
Series Title: Biochimica et Biophysica Acta vol:1694 issue:1-3 pages:279-97
Abstract: Proteins that are exported from the cytoplasm to the periplasm and outer membrane of Gram-negative bacteria, or the cell wall and growth medium of Gram-positive bacteria, are generally synthesized as precursors with a cleavable signal peptide. During or shortly after pre-protein translocation across the cytoplasmic membrane, the signal peptide is removed by signal peptidases. Importantly, pre-protein processing by signal peptidases is essential for bacterial growth and viability. This review is focused on the signal peptidases of Gram-positive bacteria, Bacillus and Streptomyces species in particular. Evolutionary concepts, current knowledge of the catalytic mechanism, substrate specificity requirements and structural aspects are addressed. As major insights in signal peptidase function and structure have been obtained from studies on the signal peptidase LepB of Escherichia coli, similarities and differences between this enzyme and known Gram-positive signal peptidases are highlighted. Notably, while the incentive for previous research on Gram-positive signal peptidases was largely based on their role in the biotechnologically important process of protein secretion, present-day interest in these essential enzymes is primarily derived from the idea that they may serve as targets for novel anti-microbials.
URI: 
ISSN: 0006-3002
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Molecular Bacteriology (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science