ITEM METADATA RECORD
Title: Combinations of griffithsin with other carbohydrate-binding agents demonstrate superior activity against HIV type 1, HIV type 2, and selected carbohydrate-binding agent-resistant HIV type 1 strains
Authors: FĂ©rir, Geoffrey
Huskens, Dana
Palmer, Kenneth E
Boudreaux, Daniel M
Swanson, Michael D
Markovitz, David M
Balzarini, Jan
Schols, Dominique # ×
Issue Date: Nov-2012
Publisher: Mary Ann Liebert, Inc.
Series Title: AIDS Research and Human Retroviruses vol:28 issue:11 pages:1513-1523
Abstract: Abstract Carbohydrate-binding agents (CBAs) are potential HIV microbicidal agents with a high genetic barrier to resistance. We wanted to evaluate whether two mannose-specific CBAs, recognizing multiple and often distinct glycan structures on the HIV envelope gp120, can interact synergistically against HIV-1, HIV-2, and HIV-1 strains that were selected for resistance against particular CBAs [i.e., 2G12 mAb and microvirin (MVN)]. Paired CBA/CBA combinations mainly showed synergistic activity against both wild-type HIV-1 and HIV-2 but also 2G12 mAb- and MVN-resistant HIV-1 strains as based on the median effect principle with combination indices (CIs) ranging between 0.29 and 0.97. Upon combination, an increase in antiviral potency of griffithsin (GRFT) up to ∼12-fold (against HIV-1), ∼8-fold (against HIV-2), and ∼6-fold (against CBA-resistant HIV-1) was observed. In contrast, HHA/GNA combinations showed additive activity against wild-type HIV-1 and HIV-2 strains, but remarkable synergy with HHA and GNA was observed against 2G12 mAb- and MVN-resistant HIV-1 strains (CI, 0.64 and 0.49, respectively). Overall, combinations of GRFT and other CBAs showed synergistic activity against HIV-1, HIV-2, and even against certain CBA-resistant HIV-1 strains. The CBAs tested appear to have distinct binding patterns on the gp120 envelope and therefore do not necessarily compete with each other's glycan binding sites on gp120. As a result, there might be no steric hindrance between two different CBAs in their competition for glycan binding (except for the HHA/GNA combination). These data are encouraging for the use of paired CBA combinations in topical microbicide applications (e.g., creams, gels, or intravaginal rings) to prevent HIV transmission.
URI: 
ISSN: 0889-2229
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
2012178.pdf Published 614KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science