Title: Altered deoxyribonucleotide pools in T-lymphoblastoid cells expressing the multisubstrate nucleoside kinase of Drosophila melanogaster
Authors: Bertoli, Ada ×
Franco, Maribel
Balzarini, Jan
Johansson, Magnus
Karlsson, Anna #
Issue Date: Aug-2005
Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies
Series Title: FEBS Journal vol:272 issue:15 pages:3918-3928
Abstract: The multisubstrate nucleoside kinase of Drosophila melanogaster (Dm-dNK) can be expressed in human solid tumor cells and its unique enzymatic properties makes this enzyme a suicide gene candidate. In the present study, Dm-dNK was stably expressed in the CCRF-CEM and H9 T-lymphoblastoid cell lines. The expressed enzyme was localized to the cell nucleus and the enzyme retained its activity. The Dm-dNK overexpressing cells showed approximately 200-fold increased sensitivity to the cytostatic activity of several nucleoside analogs, such as the pyrimidine nucleoside analogs (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and 1-beta-d-arabinofuranosylthymine (araT), but not to the antiherpetic purine nucleoside analogs ganciclovir, acyclovir and penciclovir, which may allow this technology to be applied in donor T cells and/or rescue graft vs. host disease to permit modulation of alloreactivity after transplantation. The most pronounced effect on the steady-state dNTP levels was a two- to 10-fold increased dTTP pool in Dm-dNK expressing cells that were grown in the presence of 1 microm of each natural deoxyribonucleoside. Although the Dm-dNK expressing cells demonstrated dNTP pool imbalances, no mitochondrial DNA deletions or altered mitochondrial DNA levels were detected in the H9 Dm-dNK expressing cells.
ISSN: 1742-464X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science