Title: Absolute dimensions of solar-type eclipsing binaries. EF Aquarii: a G0 test for stellar evolution models
Authors: Vos, Joris ×
Clausen, Jens Viggo
Jorgensen, Uffe Grae
Ostensen, Roy
Claret, Antonio
Hillen, Michel
Exter, Katrina #
Issue Date: 8-Feb-2012
Publisher: EDP Sciences
Series Title: Astronomy & Astrophysics vol:540 pages:-
Article number: A64
Abstract: Recent studies have shown that stellar chromospheric activity, and its effect on convective energy transport in the envelope, is most likely the cause of significant radius and temperature discrepancies between theoretical evolution models and observations. Accurate mass, radius, and abundance determinations from solar-type binaries exhibiting various levels of activity are needed for a better insight into the structure and evolution of these stars.
We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed comparison with results from recent stellar evolutionary models.
$uvby$ light curves and $uvby\beta$ standard photometry were obtained with the Str\"{o}mgren Automatic Telescope. The broadening function formalism was applied on spectra observed with HERMES at the Mercator telescope in La Palma, to obtain radial velocity curves. State-of-the-art methods were applied for the photometric and spectroscopic analyses.
Masses and radii with a precision of 0.6\% and 1.0\% respectively have been established for both components of EF Aqr. The active 0.956 $M_{\odot}$ secondary shows star spots and strong Ca II H and K emission lines. The 1.224 $M_{\odot}$ primary shows signs of activity as well, but at a lower level. An [Fe/H] abundance of 0.00$\pm$0.10 is derived with similar abundances for Si, Ca, Sc, Ti, V, Cr, Co, and Ni. Solar calibrated evolutionary models such as Yonsei-Yale, Victoria-Regina and BaSTI isochrones and evolutionary tracks are unable to reproduce EF Aqr, especially for the secondary, which is 9\% larger and 400 K cooler than predicted. Models adopting significantly lower mixing length parameters $l/H_p$ remove these discrepancies, as seen in other solar type binaries. For the observed metallicity, Granada models with a mixing length of $l/H_p=1.30$ (primary) and 1.05 (secondary) reproduce both components at a common age of 1.5$\pm$0.6 Gyr.
Observations of EF Aqr suggests that magnetic activity, and its effect on envelope convection, is likely to be the cause of discrepancies in both radius and temperature, which can be removed by adjusting the mixing length parameter of the models downwards.
ISSN: 0004-6361
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Institute of Astronomy
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
aa18606-11_final.pdf Published 349KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science