Title: Impact of subsurface rock fragments on runoff and interrill soil loss from cultivated soils
Authors: Smets, Toon ×
Lopez-Vicente, Manuel
Poesen, Jean #
Issue Date: 2011
Publisher: Wiley
Series Title: Earth Surface Processes and Landforms vol:36 issue:14 pages:1929-1937
Abstract: Field and laboratory studies have indicated that rock fragments in the topsoil may have a large impact on soil
properties, soil quality, hydraulic, hydrological and erosion processes. In most studies, the rock fragments investigated still remain visible at the soil surface and only properties of these visible rock fragments are used for predicting runoff and soil loss. However,
there are indications that rock fragments completely incorporated in the topsoil could also significantly influence the percolation and water distribution in stony soils and therefore, also infiltration, runoff and soil loss rates. Therefore, in this study interrill laboratory
experiments with simulated rainfall for 60 min were conducted to assess the influence of subsurface rock fragments incorporated in a disturbed silt loam soil at different depths below the soil surface (i.e. 0.001, 0.01, 0.05 and 0.10 m), on infiltration, surface runoff and interrill erosion processes for small and large rock fragment sizes (i.e. mean diameter 0.04 and 0.20 m, respectively). Although only small differences in infiltration rate and runoff volume are observed between the soil without rock fragments (control) and the one with subsurface rock fragments, considerable differences in total interrill soil loss are observed between the control treatment and both contrasting rock fragments sizes. This is explained by a rapid increase in soil moisture in the areas above the rock fragments and therefore a decrease in topsoil cohesion compared with the control soil profile. The observed differences in runoff volume and interrill soil loss between the control plots and those with subsurface rock fragments is largest after a cumulative rainfall (Pcum) of 11mm and progressively decreases with increasing Pcum. The results highlight the impacts and complexity of subsurface rock fragments on the production of runoff volume and soil loss and requires their inclusion in process-based runoff and erosion models.
ISSN: 0197-9337
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division of Geography & Tourism
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
impact of subsurface rock fragments on runoff and interrill.pdf Published 437KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science