Title: Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge
Authors: Van Caneghem, Jo ×
Vermeulen, Isabel
Block, Chantal
Van Brecht, A
Van Royen, P
Jaspers, M
Wauters, G
Vandecasteele, Carlo #
Issue Date: Mar-2012
Publisher: Elsevier Scientific Pub. Co.
Series Title: Journal of Hazardous Materials vol:207 pages:152-158
Conference: 2nd International Conference on Industrial and Hazardous Waste Management, location:GREECE date:Oct, 2010
Abstract: During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain "PCDD/F fingerprints". The ASR contained approximately 9000 ng PCDD/Fs/kg(DW), six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kg(DW), respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF. in total 8 ng PCDD/Fs/kg(DW). From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25-10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the FBCs outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD/F concentrations in these outputs. (C) 2011 Elsevier B.V. All rights reserved.
ISSN: 0304-3894
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Process Engineering for Sustainable Systems Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science