Title: A multi-domain Fourier pseudospectral time-domain method for the linearized Euler equations
Authors: Hornikx, Maarten ×
De Roeck, Wim
Desmet, Wim #
Issue Date: 20-May-2012
Publisher: Academic Press
Series Title: Journal of Computational Physics vol:231 issue:14 pages:4759 -4774
Abstract: The Fourier pseudospectral time-domain (F-PSTD) method is computationally one of the most cost-efficient methods for solving the linearized Euler equations for wave propagation through a medium with smoothly varying spatial inhomogeneities in the presence of rigid boundaries. As the method utilizes an equidistant discretization, local fine scale effects of geometry or medium inhomogeneities require a refinement of the whole grid which significantly reduces the computational efficiency. For this reason, a multi-domain F-PSTD methodology is presented with a coarse grid covering the complete domain and fine grids acting as a subgrid resolution of the coarse grid near local fine scale effects. Data transfer between coarse and fine grids takes place utilizing spectral interpolation with super-Gaussian window functions to impose spatial periodicity. Local time stepping is employed without intermediate interpolation. The errors introduced by the window functions and the multi-domain implementation are quantified and compared to errors related to the initial conditions and from the time iteration scheme. It is concluded that the multi-domain methodology does not introduce significant errors compared to the single-domain method. Examples of scattering from small scale density scatters, sound reflecting from a slitted rigid object and sound propagation through a jet are accurately modelled by the proposed methodology. For problems that can be solved by F-PSTD, the presented methodology can lead to a significant gain in computational efficiency.
ISSN: 0021-9991
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Production Engineering, Machine Design and Automation (PMA) Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
JCOMP_D_11_01119Revised.pdf Published 1145KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science