ITEM METADATA RECORD
Title: Role and organization of peroxisomal beta-oxidation
Authors: Van Veldhoven, Paul P ×
Mannaerts, G P #
Issue Date: 1999
Publisher: Plenum Press
Series Title: Advances in Experimental Medicine and Biology vol:466 pages:261-72
Abstract: In mammals, peroxisomes are involved in breakdown of very long chain fatty acids, prostanoids, pristanic acid, dicarboxylic fatty acids, certain xenobiotics and bile acid intermediates. Substrate spectrum and specificity studies of the four different beta-oxidation steps in rat and/or in man demonstrate that these substrates are degraded by separate beta-oxidation systems composed of different enzymes. In both species, the enzymes acting on straight chain fatty acids are palmitoyl-CoA oxidase, an L-specific multifunctional protein (MFP-1) and a dimeric thiolase. In liver, bile acid intermediates undergo one cycle of beta-oxidation catalyzed by trihydroxycoprostanoyl-CoA oxidase (in rat), or branched chain acyl-CoA oxidase (in man), a D-specific multifunctional protein (MFP-2) and SCPX-thiolase. Finally, pristanic acid is degraded in rat tissues by pristanoyl-CoA oxidase, the D-specific multifunctional protein-2 and SCPX-thiolase. Although in man a pristanoyl-CoA oxidase gene is present, so far its product has not been found. Hence, pristanoyl-CoA is believed to be desaturated in human tissues by the branched chain acyl-CoA oxidase. Due to the stereospecificity of the oxidases acting on 2-methyl-branched substrates, an additional enzyme, 2-methylacyl-CoA racemase, is required for the degradation of pristanic acid and the formation of bile acids.
ISSN: 0065-2598
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Lipid Biochemistry and Protein Interactions
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science