Title: Characterization of field-effect transistors with La2Hf2O7 and HfO2 gate dielectric layers deposited by molecular-beam epitaxy
Authors: Rittersma, ZM ×
Hooker, JC
Vellianitis, G
Locquet, Jean-Pierre
Marchiori, C
Sousa, M
Fompeyrine, J
Pantisano, L
Deweerd, W
Schram, T
Rosmeulen, M
De Gendt, Stefan
Dimoulas, A #
Issue Date: Jan-2006
Publisher: Amer inst physics
Series Title: Journal of Applied Physics vol:99 issue:2 pages:1-8
Article number: 024508
Abstract: The electrical properties of La2Hf2O7 (LHO) and HfO2 (HO) high-k dielectric layers deposited by molecular-beam epitaxy are reported. Capacitors and transistors with LHO and HO gate dielectric layers and TaN metal gate electrodes deposited using physical vapor deposition were fabricated. The (SiO2) equivalent oxide thickness (EOT), the electrical oxide thickness in inversion t(ox)(inv), and the gate leakage current density (J(g)) were determined on large area metal-oxide-semiconductor capacitors and metal-oxide-semiconductor field-effect transistors. HO layers with a physical thickness t(ph)=30 angstrom showed an EOT (t(ox)(inv)) of 15.1 angstrom (19.3 angstrom) with J(g)=8.1x10(-6) A/cm(2) at V-g=V-fb-1 V. LHO layers deposited on SiON showed a minimum EOT (t(ox)(inv)) of 18.7 angstrom (25 angstrom) with J(g)=4x10(-8) A/cm(2) at V-g=V-fb-1 V. The (effective) electron mobility at high E field for LHO layers was observed for a 40-angstrom-thick LHO layer deposited on Si with mu(eff)=147 cm(2)/V s at E=1 MV/cm. For a 30-angstrom-thick HO layer at identical field, mu(eff)=170 cm(2)/V s was found. LHO layers deposited on SiON interface exhibited 5%-10% higher electron mobility at high E field than identical layers deposited on Si. Further, both low E field and high E field mobilities decreased for thicker high-k layers, indicating remote charge scattering from both the interface and the bulk of the high-k dielectric. It was observed that LHO layers showed strongly reduced electron trapping in preexisting bulk defects as compared to HO layers. At E=1 MV/cm (corresponding to V-g=V-T+0.6 V), the trapped charges per area N-tr were N-tr< 5x10(10)/cm(2) for the LHO layers and N-tr> 5x10(11)/cm(2) for the HO layers. These results show that low-leakage Hf-based gate dielectric layers with low defect density can be obtained by alloying with La. (c) 2006 American Institute of Physics.
ISSN: 0021-8979
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Solid State Physics and Magnetism Section
Molecular Design and Synthesis
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science