ITEM METADATA RECORD
Title: Differential protein pathways in 1,25-dihydroxyvitamin d(3) and dexamethasone modulated tolerogenic human dendritic cells
Authors: Ferreira, Gabriela B ×
Kleijwegt, Fleur S
Waelkens, Etienne
Lage, Kasper
Nikolic, Tatjana
Hansen, Daniel Aaen
Workman, Christopher T
Roep, Bart O
Overbergh, Lut
Mathieu, Chantal #
Issue Date: Feb-2012
Publisher: American Chemical Society
Series Title: Journal of Proteome Research vol:11 issue:2 pages:941-71
Abstract: Tolerogenic dendritic cells (DC) that are maturation-resistant and locked in a semimature state are promising tools in clinical applications for tolerance induction. Different immunomodulatory agents have been shown to induce a tolerogenic DC phenotype, such as the biologically active form of vitamin D (1,25(OH)(2)D(3)), glucocorticoids, and a synergistic combination of both. In this study, we aimed to characterize the protein profile, function and phenotype of DCs obtained in vitro in the presence of 1,25(OH)(2)D(3), dexamethasone (DEX), and a combination of both compounds (combi). Human CD14(+) monocytes were differentiated toward mature DCs, in the presence or absence of 1,25(OH)(2)D(3) and/or DEX. Cells were prefractionated into cytoplasmic and microsomal fractions and protein samples were separated in two different pH ranges (pH 3-7NL and 6-9), analyzed by 2D-DIGE and differentially expressed spots (p < 0.05) were identified after MALDI-TOF/TOF analysis. In parallel, morphological and phenotypical analyses were performed, revealing that 1,25(OH)(2)D(3)- and combi-mDCs are closer related to each other than DEX-mDCs. This was translated in their protein profile, indicating that 1,25(OH)(2)D(3) is more potent than DEX in inducing a tolerogenic profile on human DCs. Moreover, we demonstrate that combining 1,25(OH)(2)D(3) with DEX induces a unique protein expression pattern with major imprinting of the 1,25(OH)(2)D(3) effect. Finally, protein interaction networks and pathway analysis suggest that 1,25(OH)(2)D(3), rather than DEX treatment, has a severe impact on metabolic pathways involving lipids, glucose, and oxidative phosphorylation, which may affect the production of or the response to ROS generation. These findings provide new insights on the molecular basis of DC tolerogenicity induced by 1,25(OH)(2)D(3) and/or DEX, which may lead to the discovery of new pathways involved in DC immunomodulation.
ISSN: 1535-3893
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Clinical and Experimental Endocrinology
Laboratory of Protein Phosphorylation and Proteomics
Laboratory of Phosphoproteomics (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science