Title: Towards comprehensible software fault prediction models using Bayesian network classifiers
Authors: Dejaeger, Karel ×
Verbraken, Thomas
Baesens, Bart #
Issue Date: 2013
Series Title: IEEE Transactions on Software Engineering vol:39 issue:2 pages:237-277
Abstract: Software testing is a crucial activity during software development and fault prediction models assist practitioners herein by providing an upfront identification of faulty software code by drawing upon the machine learning literature. While especially the Naive Bayes classifier is often applied in this regard, citing predictive performance and comprehensibility as its major strengths, a number of alternative Bayesian algorithms that boost the possibility to construct simpler networks with less nodes and arcs remain unexplored. This study contributes to the literature by considering 15 different Bayesian Network (BN) classifiers and comparing them to other popular machine learning techniques. Furthermore, the applicability of the Markov blanket principle for feature selection, which is a natural extension to BN theory, is investigated. The results, both in terms of the AUC and the recently introduced H-measure, are rigorously tested using the statistical framework of Demsar. It is concluded that simple and comprehensible networks with less nodes can be constructed using BN classifiers other than the Naive Bayes classifier. Furthermore, it is found that the aspects of comprehensibility and predictive performance need to be balanced out, and also the development context is an item which should be taken into account during model selection.
ISSN: 0098-5589
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Center for Management Informatics (LIRIS), Leuven
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science