Title: Mechanical and electrical characterization of BCB as a bond and seal material for cavities housing (RF-)MEMS devices
Authors: Jourdain, A ×
De Moor, P
Baert, K
De Wolf, Ingrid
Tilmans, HAC #
Issue Date: Jul-2005
Publisher: IOP Publishing Ltd.
Series Title: Journal of Micromechanics and Microengineering vol:15 issue:7 pages:S89-S96
Conference: 15th European Workshop on Micromechanics Leuven, BELGIUM, SEP 05-07, 2004
Abstract: This paper reports on the mechanical and electrical characterization of benzo-cyclo-butene (BCB) as a bonding and sealing material for 0-level packages (cavities) housing (RF-)MEMS devices. Shear strength and hermeticity of BCB-sealed cavities are experimentally investigated as functions of the geometrical parameters of the BCB sealing ring and the bonding conditions. The leak rate of BCB-sealed cavities strongly depends on the BCB width, and leak rates as low as 10(-11) mbar l s(-1) are measured for large BCB widths (>800 mu m), dropping to 10(-8) mbar l s(-1) for BCB widths of around 100 gm. Depending on the bonding conditions, shear strengths as high as 150 MPa are achieved. BCB is also used in 0-level packaging of RF-MEMS devices, such as RF-switches,and coplanar waveguides (CPWs). The electrical influence of the 0-level package is studied for different capping materials. It is experimentally shown that a 0-level package using capping chips made of low-loss high-resistivity materials (AF45 glass and high-resistivity silicon) and having a cavity height larger than about 45 mu m above RF-MEMS devices, has a negligible impact on the microwave characteristics of an RF-MEMS device. Finally, some reliability testing is performed on BCB-sealed 0-level packages in order to study the influence of temperature and humidity on the mechanical properties of BCB. After testing in relatively harsh conditions, the BCB seal stays gross leak tight and shear strengths as high as 30 MPa are measured. BCB turns out to be a very robust and reliable material to encapsulate MEMS devices.
ISSN: 0960-1317
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Department of Materials Engineering - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science