This item still needs to be validated !
ITEM METADATA RECORD
Title: Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy
Authors: Puurunen, Riikka Liisa ×
Vandervorst, Wilfried
Besling, W.F.A.
Richard, O.
Bender, Hugo
Conard, T.
Zhao, C
Delabie, Annelies
Caymax, M.
De Gendt, Stefan
Heyns, Marc
Viitanen, M.M.
de Ridder, M.
Brongersma, H.H.
Tamminga, Y.
Dao, T
de Win, T.
Verheijen, M.
Kaiser, M.
Tuominen, M. #
Issue Date: Jan-2004
Publisher: Amer inst physics
Series Title: Journal of Applied Physics vol:96 issue:9 pages:4878-4889
Abstract: Atomic layer deposition (ALD) is used in applications where inorganic material layers with uniform thickness down to the nanometer range are required. For such thicknesses, the growth mode, defining how the material is arranged on the surface during the growth, is of critical importance. In this work, the growth mode of the zirconium tetrachloride/water and the trimethyl aluminum/water ALD process on hydrogen-terminated silicon was investigated by combining information on the total amount of material deposited with information on the surface fraction of the material. The total amount of material deposited was measured by Rutherford backscattering, x-ray fluorescence, and inductively coupled plasma-optical emission spectroscopy, and the surface fractions by low-energy ion scattering. Growth mode modeling was made assuming two-dimensional growth or random deposition (RD), with a "shower model" of RD recently developed for ALD. Experimental surface fractions of the ALD-grown zirconium oxide and aluminum oxide films were lower than the surface fractions calculated assuming RD, suggesting the occurrence of island growth. Island growth was confirmed with transmission electron microscopy (TEM) measurements, from which the island size and number of islands per unit surface area could also be estimated. The conclusion of island growth for the aluminum oxide deposition on hydrogen-terminated silicon contradicts earlier observations. In this work, physical aluminum oxide islands were observed in TEM after 15 ALD reaction cycles. Earlier, thicker aluminum oxide layers have been analyzed, where islands have not been observed because they have already coalesced to form a continuous film. The unreactivity of hydrogen-terminated silicon surface towards the ALD reactants, except for reactive defect areas, is proposed as the origin of island growth. Consequently, island growth can be regarded as "undesired surface-selective ALD." (C) 2004 American Institute of Physics.
URI: 
ISSN: 0021-8979
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Electrical Engineering - miscellaneous
Associated Section of ESAT - INSYS, Integrated Systems
Department of Materials Engineering - miscellaneous
Molecular Design and Synthesis
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science