ITEM METADATA RECORD
Title: Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast
Authors: Castermans, Dries *
Somers, Ils *
Kriel, Johan
Louwet, Wendy
Wera, Stefaan
Versele, Matthias
Janssens, Veerle
Thevelein, Johan # ×
Issue Date: Jun-2012
Publisher: Science Press
Series Title: Cell Research vol:22 issue:6 pages:1058-1077
Abstract: The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.Cell Research advance online publication 31 January 2012; doi:10.1038/cr.2012.20.
ISSN: 1001-0602
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Protein Phosphorylation and Proteomics
Laboratory for Molecular Cell Biology (-)
Molecular Physiology of Plants and Micro-organisms Section - miscellaneous
Molecular Microbiology and Biotechnology Section - miscellaneous
* (joint) first author
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science