Numerical Algorithms
Author:
Keywords:
Numerical integration, Quasi-Monte Carlo, Polynomial lattice rules, Digital nets, Science & Technology, Physical Sciences, Mathematics, Applied, Mathematics, MULTIVARIATE INTEGRATION, NUMERICAL-INTEGRATION, ALGORITHMS, SPACES, math.NA, 65D30, 65C05, 0102 Applied Mathematics, 0103 Numerical and Computational Mathematics, 0802 Computation Theory and Mathematics, Numerical & Computational Mathematics, 4901 Applied mathematics, 4903 Numerical and computational mathematics
Abstract:
We show how to obtain a fast component-by-component construction algorithm for higher order polynomial lattice rules. Such rules are useful for multivariate quadrature of high-dimensional smooth functions over the unit cube as they achieve the near optimal order of convergence. The main problem addressed in this paper is to find an efficient way of computing the worst-case error. A general algorithm is presented and explicit expressions for base 2 are given. To obtain an efficient component-by-component construction algorithm we exploit the structure of the underlying cyclic group. We compare our new higher order multivariate quadrature rules to existing quadrature rules based on higher order digital nets by computing their worst-case error. These numerical results show that the higher order polynomial lattice rules improve upon the known constructions of quasi-Monte Carlo rules based on higher order digital nets.