Title: Constant Force Extensional Rheometry of Polymer Solutions
Authors: Szabo, Peter ×
McKinley, Gareth H.
Clasen, Christian #
Issue Date: Feb-2012
Publisher: Elsevier Scientific Pub. Co.
Series Title: Journal of non-Newtonian Fluid Mechanics vol:169-170 pages:26-41
Abstract: We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta & Tytus [JN- NFM vol. 35, pp 215-229, 1990]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution is first established between two cylindrical disks. The upper disk is held fixed and may be connected to a force transducer while the lower cylinder falls due to gravity. By varying the mass of the falling cylinder and measuring its resulting acceleration, the viscoelastic nature of the elongating fluid filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified. This unique characteristic of the experiment is analyzed numerically us- ing the FENE-P model and two alternative kinematic descriptions; employing either an axially-uniform filament approximation or a quasi two-dimensional Lagrangian description of the elongating thread. In addition, a second order pertubation the- ory for the trajectory of the falling mass is developed for simple viscous filaments. Based on these theoretical considerations we develop an expression that enables estimation of the finite extensibility parameter characterizing the polymer solution in terms of quantities that can be extracted directly from simple measurement of the time-dependent filament diameter.
ISSN: 0377-0257
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Soft Matter, Rheology and Technology Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
CCJ33_2012_Szabo_McKinley_Clasen_Journal_of_Non_Newtonian_Fluid_Mechanics_post-print.pdfOA article Published 892KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science