Title: Failure to unmask pseudonormal diastolic function by a valsalva maneuver: tricuspid insufficiency is a major factor
Authors: Liu, Dan
Niemann, Markus
Hatle, Liv
Herrmann, Sebastian
Voelker, Wolfram
Ertl, Georg ×
Bijnens, Bart
Weidemann, Frank #
Issue Date: Nov-2011
Publisher: Lippincott Williams & Wilkins
Series Title: Circulation. Cardiovascular Imaging vol:4 issue:6 pages:671-677
Abstract: Background- For the clinical assessment of patients with dyspnea, the inversion of the early (E) and late (A) transmitral flow during Valsalva maneuver (VM) frequently helps to distinguish pseudonormal from normal filling pattern. However, in an important number of patients, VM fails to reveal the change from dominant early mitral flow velocity toward larger late velocity. Methods and Results- From December 2009 to October 2010, we selected consecutive patients with abnormal filling with (n=25) and without E/A inversion (n=25) during VM. Transmitral, tricuspid, and pulmonary Doppler traces were recorded and the degree of insufficiency was estimated. After evaluating all standard echocardiographic morphological, functional, and flow-related parameters, it became evident that the failure to unmask the pseudonormal filling pattern by VM was related to the degree of the tricuspid insufficiency (TI). TI was graded as mild in 24 of 25 patients in the group with E/A inversion during VM, whereas TI was graded as moderate to severe in 24 of the 25 patients with pseudonormal diastolic function without E/A inversion during VM. Conclusions- Our data suggest that TI is a major factor to prevent E/A inversion during a VM in patients with pseudonormal diastolic function. This probably is due to a decrease in TI resulting in an increase in forward flow rather than the expected decrease during the VM. Thus, whenever a pseudonormal diastolic filling pattern is suspected, the use of a VM is not an informative discriminator in the presence of moderate or severe TI.
ISSN: 1941-9651
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Cardiovascular Imaging and Dynamics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science