Title: The E circle times e dynamic Jahn-Teller problem: A new insight from the strong coupling limit
Authors: Sato, T ×
Chibotaru, Liviu
Ceulemans, Arnout #
Issue Date: Feb-2005
Publisher: American Institute of Physics
Series Title: Journal of Chemical Physics vol:122 issue:5
Article number: 054104
Abstract: Correct boundary conditions for the Ecircle timese dynamic Jahn-Teller problem are considered explicitly for the first time to obtain approximate analytical solutions in the strong coupling limit. Numerical solutions for the decoupled equations using the finite difference method are also presented. The numerical solutions for the decoupled equations exhibit avoided crossings in the weak coupling region, which explains the oscillating behavior of the solutions obtained by Longuet-Higgins for the coupled equations. The obtained analytical energy expressions show improved agreement with the numerical calculations as compared with the previous treatment in which the potentials were assumed to be harmonic. We demonstrate that the pseudorotational energy j(2)/(2g(2)), where g is the dimensionless vibronic coupling constant, and j total angular momentum: j=+/-1/2,+/-3/2,..., in the conventional strong coupling expression for the vibronic levels of the lower sheet is exact. Non-Hermitian first-order perturbation theory gives the energy which is correct up to 1/g(4). The asymptotic behavior of the wave function at the origin does not influence the corrected energy up to order of 1/g(4). At the same time the treatment of the upper sheet with correct boundary conditions gives solutions which are entirely different from the corresponding Slonczewski's solutions. Besides, the correct boundary conditions enable us to evaluate the nonadiabatic coupling between the lower and upper potential sheets. The energy correction due to the nonadiabatic coupling is estimated to be of order 1/g(6). (C) 2005 American Institute of Physics.
ISSN: 0021-9606
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Quantum Chemistry and Physical Chemistry Section
× corresponding author
# (joint) last author

Files in This Item:
File Status SizeFormat
article.pdf Published 428KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science