Title: Crystallization behavior of polymer/montmorillonite nanocomposites. Part III. Polyamide-6/montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration
Authors: Homminga, DS ×
Goderis, Bart
Mathot, Vincent
Groeninckx, Gabriƫl #
Issue Date: Jan-2006
Publisher: Elsevier sci ltd
Series Title: Polymer vol:47 issue:5 pages:1630-1639
Abstract: Several series of polyamide-6 (PA-6) nanocomposites, differing in montmorillonite (MMT) type and content and PA-6 matrix molecular weight, were prepared by melt-extrusion and the associated PA-6 crystallization behavior and morphology was evaluated using (synchrotron) Xray diffraction, transmission electron microscopy and differential scanning calorinietry. The nucleating ability of silicate layers is poor in PA-6 nanocomposites made by melt-extrusion because highly active, stable PA-6 crystallization precursors are generated during melt-extrusion. In most of the studied PA-6/MMT nanocomposites the dispersed silicate layers act as impurities and decrease rather than increase the overall crystallization kinetics of PA-6, especially at high MMT contents. Furthermore, at a given MMT concentration, the crystal growth retardation inflates with increasing degree of exfoliation, which dependents on the MMT type and which increases with increasing PA-6 molecular weight. One of the considered MMT types leads to a poorly exfoliatcd nanomorphology and as a result no retardation of crystal growth is observed. furthermore, the disturbed crystal growth does not alter the PA-6 semicrystalline stack morphology. Moderate nucleation effects due to the presence of MMT can be observed when the particle load is low (low amount of MMT and/or poor degree of exfoliation) and provided the supercooling is Sufficiently large. (c) 2006 Elsevier Ltd. All rights reserved.
ISSN: 0032-3861
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Imaging and Photonics
Chemistry - miscellaneous
Polymer Chemistry and Materials
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science