Title: To the core of autocatalysis in cyclohexane autoxidation
Authors: Hermans, Ive
Jacobs, Pierre
Peeters, Jozef # ×
Issue Date: May-2006
Publisher: VCH Verlagsgesellschaft
Series Title: Chemistry - a European Journal vol:12 issue:16 pages:4229-4240
Abstract: Despite their industrial importance, the detailed reaction mechanism of autoxidation reactions is still insufficiently known. In this work, complementary experimental and theoretical techniques are employed to address the radical-chain initiation in the autoxidation of cyclohexane with a particular focus on the "lighting-off" of the oxidation by (added) cyclohexanone. We used a newly developed method to quantify the intrinsic rate of chain initiation as well as the rate enhancement by cyclohexanone and several other (oxygenated) molecules. On the basis of first principles, the hitherto assumed perhemiketale mechanism was found to be many orders of magnitude too slow to account for the observed initiation enhancement by the ketone. Instead, it is shown that the pronounced chain-initiation enhancement by the ketone is attributable to a newly proposed concerted reaction between cyclohexyl hydroperoxide and cyclohexanone, in which the (OH)-O-center dot radical breaking away from the hydroperoxide abstracts an alpha H atom from the ketone, thereby energetically assisting in the cleavage of the RO-OH bond. Ibis reaction is highly efficient in generating radicals as it quasi-excludes geminate in-cage recombination. As a result, the ketone oxidation product at a level of 1 mol% increases the initiation rate by one order of magnitude, and so acts as a highly efficient "autocatalyst" in autoxidation reactions. An analogous reaction with cyclohexanol, although estimated to be even faster, has only a marginal effect on the overall kinetics, owing to the fast subsequent formation of HO2 center dot radicals that very rapidly terminate with other ROO center dot radicals. Finally, solid evidence is presented that, also in absence of oxygenates, ROOH initiation is actually a bimolecular reaction, involving concerted H abstraction from the alkane substrate by the nascent (OH)-O-center dot.
ISSN: 0947-6539
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre for Surface Chemistry and Catalysis
Quantum Chemistry and Physical Chemistry Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science