Title: Continuous Synthesis Process of Hexagonal Nanoplates of P6m Ordered Mesoporous Silica
Authors: Jammaer, Jasper
Van Erp, Titus
Aerts, Alexander
Kirschhock, Christine
Martens, Johan # ×
Issue Date: Aug-2011
Publisher: American Chemical Society
Series Title: Journal of the American Chemical Society vol:133 issue:34 pages:13737-13745
Abstract: Hexagonally ordered mesoporous silica coined COK-12 was synthesized in a continuous process by combining streams of sodium silicate and citric acid/sodium citrate buffered solution of (ethylene oxide)20_(propylene oxide)70_(ethylene oxide)20 triblock copolymer (Pluronic P123) from separate reservoirs. COK-12 precipitated spontaneously upon combining both streams at nearly neutral pH and ambient temperature. Stable intermediates
of the COK-12 formation process could be prepared by limiting sodium silicate addition. Investigation of these intermediates using small-angle X-ray scattering revealed COK-12 formed via an assembly process departing from spherical uncharged core_shell P123-silica micelles. The sterical stabilization of these micelles decreased
upon accumulation of silicate oligomers in their shell. Aggregation of the spherical micelles led to cylindrical micelles, which aligned and adopted the final hexagonal organization. This unprecedentedly fast formation of P6m ordered mesoporous silica was caused by two factors in the synthesis medium: the neutral pHfavoring uncharged silicate oligomers and the high salt concentration promoting hydrophobic interactions with surfactant micelles leading to silica accumulation in the PEO shell. The easy continuous synthesis process is convenient for large-scale production. The platelet particle morphology with short and identical internal channels will be advantageous for many applications such as pore replication, nanotube or fiber growth, catalytic functionalization, drug delivery, film and sensor development, and in nano dyes as well as for investigation of pore diffusion phenomena.
ISSN: 0002-7863
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre for Surface Chemistry and Catalysis
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science