Title: Tailoring nanoporous materials by atomic layer deposition
Authors: Detavernier, Christophe ×
Dendooven, Jolien
Pulinthanathu Sree, Sreeprasanth
Ludwig, Karl F.
Martens, Johan #
Issue Date: 2011
Publisher: Royal Society of Chemistry
Series Title: Chemical Society Reviews vol:40 issue:11 pages:5242-4253
Abstract: Atomic layer deposition (ALD) is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. The self-limiting nature of the chemical reactions ensures precise film thickness control and excellent step coverage, even on 3D structures with large aspect ratios. At present, ALD is mainly used in the microelectronics industry, e.g. for growing gate oxides. The excellent conformality that can be achieved with ALD also renders it a promising candidate for coating porous structures, e.g. for functionalization of large surface area substrates for catalysis, fuel cells, batteries, supercapacitors,
filtration devices, sensors, membranes etc. This tutorial review focuses on the application of ALD for catalyst design. Examples are discussed where ALD of TiO2 is used for tailoring the interior surface of nanoporous films with pore sizes of 4–6 nm, resulting in photocatalytic activity. In still narrower pores, the ability to deposit chemical elements can be exploited to generate catalytic sites. In zeolites, ALD of aluminium species enables the generation of acid catalytic activity.
ISSN: 0306-0012
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre for Surface Chemistry and Catalysis
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science