Title: Synthesis and antitumor molecular mechanism of agents based on amino 2-(3',4',5'-trimethoxybenzoyl)benzo[b]furan: inhibition of tubulin and induction of apoptosis
Authors: Romagnoli, Romeo ×
Baraldi, Pier Giovanni
Lopez-Cara, Carlota
Cruz-Lopez, Olga
Carrion, Maria Dora
Kimatrai Salvador, Maria
Bermejo, Jaime
Estévez, Sara
Estévez, Francisco
Balzarini, Jan
Brancale, Andrea
Ricci, Antonio
Chen, Longchuan
Kim, Jae Gwan
Hamel, Ernest #
Issue Date: Oct-2011
Publisher: Wiley - V C H Verlag GmbH & Co. KGaA
Series Title: ChemMedChem vol:6 issue:10 pages:1841-53
Article number: 10.1002/cmdc.201100279
Abstract: Induction of apoptosis is a promising strategy that could lead to the discovery of new molecules active in cancer chemotherapy. This property is generally observed when cells are treated with agents that target microtubules, dynamic structures that play a crucial role in cell division. Small molecules such as benzo[b]furans are attractive as inhibitors of tubulin polymerization. A new class of inhibitors of tubulin polymerization based on the 2-(3',4',5'-trimethoxybenzoyl)benzo[b]furan molecular skeleton, with the amino group placed at different positions on the benzene ring, were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell-cycle effects. The methoxy substitution pattern on the benzene portion of the benzo[b]furan moiety played an important role in affecting antiproliferative activity. In the series of 5-amino derivatives, the greatest inhibition of cell growth occurred if the methoxy substituent is placed at the C6 position, whereas C7 substitution decreases potency. The most promising compound in this series is 2-(3',4',5'-trimethoxybenzoyl)-3-methyl-5-amino-6-methoxybenzo[b]furan (3 h), which inhibits cancer cell growth at nanomolar concentrations (IC(50) =16-24 nM), and interacts strongly with tubulin by binding to the colchicine site. Sub-G(1) apoptotic cells in cultures of HL-60 and U937 cells were observed by flow cytometric analysis after treatment with 3 h in a concentration-dependent manner. We also show that compound 3 h induces apoptosis by activation of caspase-3, -8, and -9, and this is associated with cytochrome c release from mitochondria. The introduction of an α-bromoacryloyl group increased antiproliferative activity with respect to the parent amino derivatives.
ISSN: 1860-7179
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
2011150.pdf Published 1453KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science