Title: Extended Kalman Filter Based Learning Algorithm for Type-2 Fuzzy Logic Systems and its Experimental Evaluation
Authors: Khanesar, Mojtaba Ahmadieh ×
Kayacan, Erdal
Teshnehlab, Mohammad
Kaynak, Okyay #
Issue Date: Nov-2012
Publisher: Institute of Electrical and Electronics Engineers
Series Title: IEEE Transactions on Industrial Electronics vol:59 issue:11 pages:4443-4455
Abstract: In this paper, the use of extended Kalman filter for the optimization of the parameters of type-2 fuzzy logic systems is proposed. The type-2 fuzzy logic system considered in this study benefits from a novel type-2 fuzzy membership function which has certain values on both ends of the support and the kernel, and uncertain values on other parts of the support. In order to have a comparison of the extended Kalman filter with other existing methods in the literature, particle swarm optimization and gradient descent-based methods are used. The proposed type-2 fuzzy neuro structure is tested on different noisy input-output data sets, and it is shown that extended Kalman filter has a better performance when compared to the gradient descent-based methods. Although the performance of the proposed method is comparable with the particle swarm optimization method, it is faster and more efficient than the particle swarm optimization method. Moreover, the simulation results show that the proposed novel type-2 fuzzy membership function with the extended Kalman filter has noise rejection property. Kalman filter is also used to train the parameters of type-2 fuzzy logic system in a feedback error learning scheme. Then, it is used to control a real-time laboratory setup ABS and satisfactory results are obtained.
ISSN: 0278-0046
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science