Title: Synthesis, structure, magnetism and theoretical study of a series of complexes with a decanuclear core [Ln(III)(2)Cu(II)(8)] (Ln = Y, Gd, Tb, Dy)
Authors: Borta, Ana ×
Jeanneau, Erwann
Chumakov, Yuri
Luneau, Dominique
Ungur, Liviu
Chibotaru, Liviu F
Wernsdorfer, Wolfgang #
Issue Date: 2011
Publisher: CNRS/Gauthier-Villars
Series Title: New Journal of Chemistry vol:35 issue:6 pages:1270-1279
Abstract: A family of four isomorph complexes with a decanuclear [Cu(8)Ln(2)] core of general formula [Ln(2)Cu(8)(mu-PyO)(12)(mu(4)-O)(2)(mu-Cl)(2)Cl-4(H2O)(2)]center dot nH(2)O [Ln(III) = Y(III) (1), Gd(III) (2), Tb(III) (3), Dy(III) (4); 2-PyOH = 2-hydroxypyridine] was isolated and structurally characterized. All compounds are isomorphs and may be viewed as a hexanuclear central core sandwiched in between two lateral dinuclear copper units. The temperature dependence of the magnetic susceptibility and the field dependence of the magnetization were investigated on polycrystalline samples. The yttrium compound 1 showed an overall behavior dominated by an antiferromagnetic interaction between the copper ions, while for compounds 2-4 the magnetic behavior indicated the addition of a ferromagnetic interaction with the lanthanide ions. The magnetic properties were computationally studied by means of fragment ab initio calculations. The calculation on the yttrium complex allowed determining the strength and sign of the Cu center dot center dot center dot Cu magnetic interactions considering three antiferromagnetic coupling constants: two within the central (J(3) = -44 cm(-1)) and the lateral (J(4) = -40 cm(-1)) copper dinuclear unit, and one (J(5) = -24 cm(-1)) between the lateral and the central copper. Simulation of the magnetic behavior of the Dy (4) compound gave J(1) = +0.25 cm(-1) for Dy-Dy and J(2) = +2.0 cm(-1) for Dy-Cu pairs. The calculated g tensors of the copper(II) ions were found to be quite anisotropic and contributed via anisotropic exchange interactions, together with zero-field (crystal field) splitting on Ln, to the weak single-molecule magnet (SMM) behavior of 2, 3 and 4. Among them, the highest coercivity was found in the gadolinium complex (2), despite the fact that it is much less anisotropic than the other two. We explain this surprising result by a higher multiplicity of the ground spin term in 2 compared to the ground manifolds of states in 3 and 4. Besides, due to relatively large Cu-Gd interaction, the ground exchange term in 2 has enough separation from excited exchange terms, which makes the barrier of reversal of magnetization efficient in this complex.
ISSN: 1144-0546
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Quantum Chemistry and Physical Chemistry Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
c0nj00931h.pdfmain article Published 2484KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science