Title: Mutations M184V and Y115F in HIV-1 reverse transcriptase discriminate against "nucleotide-competing reverse transcriptase inhibitors"
Authors: Ehteshami, Maryam ×
Scarth, Brian J
Tchesnokov, Egor P
Dash, Chandravanu
Le Grice, Stuart F J
Hallenberger, Sabine
Jochmans, Dirk
Götte, Matthias #
Issue Date: Oct-2008
Publisher: American Society for Biochemistry and Molecular Biology
Series Title: Journal of Biological Chemistry vol:283 issue:44 pages:29904-11
Abstract: Indolopyridones are potent inhibitors of reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1). Although the structure of these compounds differs from established nucleoside analogue RT inhibitors (NRTIs), previous studies suggest that the prototype compound INDOPY-1 may bind in close proximity to the polymerase active site. NRTI-associated mutations that are clustered around the active site confer decreased, e.g. M184V and Y115F, or increased, e.g. K65R, susceptibility to INDOPY-1. Here we have studied the underlying biochemical mechanism. RT enzymes containing the isolated mutations M184V and Y115F cause 2-3-fold increases in IC(50) values, while the combination of the two mutations causes a >15-fold increase. K65R can partially counteract these effects. Binding studies revealed that the M184V change reduces the affinity to INDOPY-1, while Y115F facilitates binding of the natural nucleotide substrate and the combined effects enhance the ability of the enzyme to discriminate against the inhibitor. Studies with other strategic mutations at residues Phe-61 and Ala-62, as well as the use of chemically modified templates shed further light on the putative binding site of the inhibitor and ternary complex formation. An abasic site residue at position n, i.e. opposite the 3'-end of the primer, prevents binding of INDOPY-1, while an abasic site at the adjacent position n+1 has no effect. Collectively, our findings provide strong evidence to suggest that INDOPY-1 can compete with natural deoxynucleoside triphosphates (dNTPs). We therefore propose to refer to members of this class of compounds as "nucleotide-competing RT inhibitors" (NcRTIs).
ISSN: 0021-9258
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science