ITEM METADATA RECORD
Title: Nonequilibrium wetting transition in a nonthermal 2D Ising model
Authors: Hooyberghs, J ×
Indekeu, Joseph #
Issue Date: May-2011
Publisher: Springer-Verlag Heidelberg
Series Title: European Physical Journal B, Condensed Matter Physics vol:81 issue:2 pages:155-163
Abstract: Nonequilibrium wetting transitions are observed in Monte Carlo simulations of a kinetic spin system in the absence of a detailed balance condition with respect to an energy functional. A nonthermal model is proposed starting from a two-dimensional Ising spin lattice at zero temperature with two boundaries subject to opposing surface fields. Local spin excitations are only allowed by absorbing an energy quantum (photon) below a cutoff energy E (c) . Local spin relaxation takes place by emitting a photon which leaves the lattice. Using Monte Carlo simulation nonequilibrium critical wetting transitions are observed as well as nonequilibrium first-order wetting phenomena, respectively in the absence or presence of absorbing states of the spin system. The transitions are identified from the behavior of the probability distribution of a suitably chosen order parameter that was proven useful for studying wetting in the (thermal) Ising model.
ISSN: 1434-6028
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Theoretical Physics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science