ITEM METADATA RECORD
Title: Identification and characterisation of monoclonal antibodies that impair the activation of human thrombin activatable fibrinolysis inhibitor through different mechanisms
Authors: Mishra, Niraj
Vercauteren, Ellen
Develter, Jan
Bammens, Riet
Declerck, Paul
Gils, Ann # ×
Issue Date: Jul-2011
Publisher: F.K. Schattauer
Series Title: Thrombosis and Haemostasis vol:106 issue:1 pages:90-101
Abstract: Thrombin activatable fibrinolysis inhibitor (TAFI) forms a molecular link between coagulation and fibrinolysis and is a putative target to develop profibrinolytic drugs. Out of a panel of monoclonal antibodies (MA) raised against TAFI-ACIIYQ, we selected MA-TCK11A9, MA-TCK22G2 and MA-TCK27A4, which revealed high affinity towards human TAFI-TI-wt. MA-TCK11A9 was able to inhibit mainly plasmin-mediated TAFI activation, MA-TCK22G2 inhibited plasmin- and thrombin-mediated TAFI activation and MA-TCK27A4 inhibited TAFI activation by plasmin, thrombin and thrombin/thrombomodulin (T/TM) in a dose-dependent manner. These MA did not interfere with TAFIa activity. Using an eight-fold molar excess of MA over TAFI, all three MA were able to reduce clot lysis time significantly, i.e. in the presence of exogenous TM, MA-TCK11A9, MA-TCK22G2 and MA-TCK27A4 reduced clot lysis time by 47 ± 9.1%, 80 ± 8.6% and 92 ± 14%, respectively, compared to PTCI. This effect was even more pronounced in the absence of TM i.e. MA-TCK11A9, MA-TCK22G2 and MA-TCK27A4 reduced clot lysis time by 90 ± 14%, 140 ± 12% and 147 ± 29%, respectively, compared to PTCI. Mutagenesis analysis revealed that residues at position 268, 272 and 276 are involved in the binding of MA-TCK11A9, residues 147 and 148 in the binding of MA-TCK22G2 and residue 113 in the binding of MA-TCK27A4. The present study identified three MA, with distinct epitopes, that impair the activation of human TAFI and demonstrated that MA-TCK11A9 which mainly impairs plasmin-mediated TAFI activation can also reduce significantly clot lysis time in vitro.
URI: 
ISSN: 0340-6245
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory for Pharmaceutical Biology (-)
Laboratory for Molecular Diagnosis
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science