ITEM METADATA RECORD
Title: Identification of linear systems using output measurements with only two possible values
Authors: Depraetere, Bruno
Pinte, Greg
Swevers, Jan
Issue Date: 2011
Host Document: 50th IEEE Conference on Decision and Control and European Control Conference vol:50th IEEE Conference on Decision and Control and European Control Conference pages:1473-1478
Conference: 50th IEEE Conference on Decision and Control and European Control Conference location:Orlando, Florida date:12-15 December 2011
Abstract: Classical identification cannot be applied when no output measurements are available. In many situations however, discrete information on the unmeasured outputs can still be obtained and used to identify the underlying dynamics. An example is a moving object where an optical sensor can detect whether or not is in the sensors line of sight but whose position is not measured. Using these discrete sources of data to estimate a model for the underlying dynamics is equivalent to the estimation of the linear parameters of a Wiener system, which has a known but non-invertible static non-linearity with two output levels. Techniques are derived to perform this estimation, using sequential quadratic programming to minimize a least squares goal function. Simulations are used to validate the proposed approach, yielding good convergence of the linear model parameters to their targets and a high prediction accuracy for the unmeasured variable of the Wiener system.
ISBN: 978-1-61284-801-3
Publication status: published
KU Leuven publication type: IC
Appears in Collections:Production Engineering, Machine Design and Automation (PMA) Section

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science