ITEM METADATA RECORD
Title: Practical limits for detection of ferromagnetism using highly sensitive magnetometry techniques
Authors: Pereira, Lino ×
Araujo, J. P
Van Bael, Margriet
Temst, Kristiaan
Vantomme, André #
Issue Date: Jun-2011
Publisher: Institute of Physics and IOP Publishing
Series Title: Journal of Physics D, Applied Physics vol:44 issue:21 pages:-
Article number: 215001
Abstract: Over the last ten years, signatures of high temperature ferromagnetism have been found in thin films and nanoparticles of various materials which are non-ferromagnetic in bulk, from semiconductors to superconductors. These studies often involve state-of-the-art magnetometers working close to the limits of their sensitivity, where magnetic contaminations and measurement artefacts become non-negligible. Because such spurious effects may be involved, the reliability of magnetometry techniques for the detection of ferromagnetism in these new magnetic nanomaterials has been questioned. In this paper, we present a detailed study on magnetic contamination arising from sample processing and handling, describing how it may occur and how it can be avoided or otherwise removed. We demonstrate that, when proper procedures are followed, extrinsic magnetic signals can be reproducibly kept below 5 x 10(-7) emu (5 x 10(-10) A m(2)). We also give an overview of the expected levels of contamination when such optimum conditions cannot be guaranteed and analyse the characteristics of the resulting magnetic behaviour, discussing which features may or may not be used as criteria to distinguish it from intrinsic ferromagnetism. Although the measurements were performed using superconducting quantum interference device magnetometers, most of what we describe can also be applied when using alternating-gradient force and vibrating-sample magnetometers.
ISSN: 0022-3727
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Nuclear and Radiation Physics Section
Solid State Physics and Magnetism Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science