This item still needs to be validated !
Title: Promotion effects in the oxidation of CO over zeolite-supported Pt nanoparticles
Authors: Visser, T ×
Nijhuis, TA
van der Eerden, AMJ
Jenken, K
Ji, YY
Bras, W
Nikitenko, Sergey
Ikeda, Y
Lepage, M
Weckhuysen, Bert #
Issue Date: Jan-2005
Publisher: Amer chemical soc
Series Title: Journal of physical chemistry b vol:109 issue:9 pages:3822-3831
Abstract: Well-defined Pt-nanoparticles with an average diameter of 1 nm supported on a series of zeolite Y samples containing different monovalenf (H+, Na+, K+, Rb+, and Cs+) and divalent (Mg2+, Ca2+, Sr2+, and Ba2+) cations have been used as model systems to investigate the effect of promotor elements in the oxidation of CO in excess oxygen. Time-resolved infrared spectroscopy measurements allowed us to study the temperature-programmed desorption of CO from supported Pt nanoparticles to monitor the electronic changes in the local environment of adsorbed CO. It was found that the red shift of the linear Pt-coordinated Cequivalent toO vibration compared to that of gas-phase CO increases with an increasing cation radius-to-charge ratio. In addition, a systematic shift from linear (L) to bridge (B) bonded Cequivalent toO was observed for decreasing Lewis acidity, as expressed by the Kamlet-Taft parameter alpha. A decreasing a results in an increasing electron charge on the framework oxygen atoms and therefore an increasing electron charge on the supported Pt nanoparticles. This observation was confirmed with X-ray absorption spectroscopy, and the intensity of the experimental Pt atomic XAFS correlates with the Lewis acidity of the cation introduced. Furthermore, it was found that the CO coverage increases with increasing electron density on the Pt nanoparticles. This increasing electron density was found to result in an increased CO oxidation activity; i.e., the T-50% for CO oxidation decreases with decreasing alpha. In other words, basic promotors facilitate the chernisorption of CO on the Pt particles. The most promoted CO oxidation catalyst is a Pt/K-Y sample, which has a T-50% of 390 K and a L:B intensity ratio of 2.7. The obtained results provide guidelines to design improved CO oxidation catalysts.
ISSN: 1520-6106
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Imaging and Photonics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science